Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Res Sq ; 2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37131733

RESUMEN

Previously we established a family of macrocyclic peptide triazoles (cPTs) that inactivate the Env protein complex of HIV-1, and identified the pharmacophore that engages Env's receptor binding pocket. Here, we examined the hypothesis that the side chains of both components of the triazole Pro - Trp segment of cPT pharmacophore work in tandem to make intimate contacts with two proximal subsites of the overall CD4 binding site of gp120 to stabilize binding and function. Variations of the triazole Pro R group, which previously had been significantly optimized, led to identification of a variant MG-II-20 that contains a pyrazole substitution. MG-II-20 has improved functional properties over previously examined variants, with Kd for gp120 in the nM range. In contrast, new variants of the Trp indole side chain, with either methyl- or bromo- components appended, had disruptive effects on gp120 binding, reflecting the sensitivity of function to changes in this component of the encounter complex. Plausible in silico models of cPT:gp120 complex structures were obtained that are consistent with the overall hypothesisof occupancy by the triazole Pro and Trp side chains, respectively, into the ß20/21 and Phe43 sub-cavities. The overall results strengthen the definition of the cPT-Env inactivator binding site and provide a new lead composition (MG-II-20) as well as structure-function findings to guide future HIV-1 Env inactivator design.

2.
Viruses ; 15(5)2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37243271

RESUMEN

The ability of the HIV-1 accessory proteins Nef and Vpu to decrease CD4 levels contributes to the protection of infected cells from antibody-dependent cellular cytotoxicity (ADCC) by preventing the exposure of Env vulnerable epitopes. Small-molecule CD4 mimetics (CD4mc) based on the indane and piperidine scaffolds such as (+)-BNM-III-170 and (S)-MCG-IV-210 sensitize HIV-1-infected cells to ADCC by exposing CD4-induced (CD4i) epitopes recognized by non-neutralizing antibodies that are abundantly present in plasma from people living with HIV. Here, we characterize a new family of CD4mc, (S)-MCG-IV-210 derivatives, based on the piperidine scaffold which engages the gp120 within the Phe43 cavity by targeting the highly conserved Asp368 Env residue. We utilized structure-based approaches and developed a series of piperidine analogs with improved activity to inhibit the infection of difficult-to-neutralize tier-2 viruses and sensitize infected cells to ADCC mediated by HIV+ plasma. Moreover, the new analogs formed an H-bond with the α-carboxylic acid group of Asp368, opening a new avenue to enlarge the breadth of this family of anti-Env small molecules. Overall, the new structural and biological attributes of these molecules make them good candidates for strategies aimed at the elimination of HIV-1-infected cells.


Asunto(s)
Infecciones por VIH , Seropositividad para VIH , VIH-1 , Humanos , Epítopos , Linfocitos T CD4-Positivos , Antígenos CD4/metabolismo , Citotoxicidad Celular Dependiente de Anticuerpos , Proteína gp120 de Envoltorio del VIH/metabolismo , Anticuerpos Anti-VIH
3.
J Chem Theory Comput ; 19(10): 2953-2972, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37116214

RESUMEN

The recent determination of cryo-EM structures of voltage-gated sodium (Nav) channels has revealed many details of these proteins. However, knowledge of ionic permeation through the Nav pore remains limited. In this work, we performed atomistic molecular dynamics (MD) simulations to study the structural features of various neuronal Nav channels based on homology modeling of the cryo-EM structure of the human Nav1.4 channel and, in addition, on the recently resolved configuration for Nav1.2. In particular, single Na+ permeation events during standard MD runs suggest that the ion resides in the inner part of the Nav selectivity filter (SF). On-the-fly free energy parametrization (OTFP) temperature-accelerated molecular dynamics (TAMD) was also used to calculate two-dimensional free energy surfaces (FESs) related to single/double Na+ translocation through the SF of the homology-based Nav1.2 model and the cryo-EM Nav1.2 structure, with different realizations of the DEKA filter domain. These additional simulations revealed distinct mechanisms for single and double Na+ permeation through the wild-type SF, which has a charged lysine in the DEKA ring. Moreover, the configurations of the ions in the SF corresponding to the metastable states of the FESs are specific for each SF motif. Overall, the description of these mechanisms gives us new insights into ion conduction in human Nav cryo-EM-based and cryo-EM configurations that could advance understanding of these systems and how they differ from potassium and bacterial Nav channels.


Asunto(s)
Simulación de Dinámica Molecular , Canales de Sodio Activados por Voltaje , Humanos , Canales de Sodio Activados por Voltaje/química , Canales de Sodio Activados por Voltaje/metabolismo , Bacterias/metabolismo , Iones/metabolismo , Lisina
4.
bioRxiv ; 2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-36993184

RESUMEN

The ability of HIV-1 accessory proteins Nef and Vpu to decrease CD4 levels contributes to the protection of infected cells from antibody-dependent cellular cytotoxicity (ADCC) by preventing the exposure of Env vulnerable epitopes. Small-molecule CD4 mimetics (CD4mc) based on the indane and piperidine scaffolds such as (+)-BNM-III-170 and ( S )-MCG-IV-210 sensitize HIV-1 infected cells to ADCC by exposing CD4-induced (CD4i) epitopes recognized by non-neutralizing antibodies abundantly present in plasma from people living with HIV. Here, we characterize a new family of CD4mc, ( S )-MCG-IV-210 derivatives, based on the piperidine scaffold which engage the gp120 within the Phe43 cavity by targeting the highly-conserved Asp 368 Env residue. We utilized structure-based approaches and developed a series of piperidine analogs with improved activity to inhibit infection of difficult-to-neutralize tier-2 viruses and sensitize infected cells to ADCC mediated by HIV+ plasma. Moreover, the new analogs formed an H-bond with the α-carboxylic acid group of Asp 368 , opening a new avenue to enlarge the breadth of this family of anti-Env small molecules. Overall, the new structural and biological attributes of these molecules make them good candidates for strategies aimed at the elimination HIV-1-infected cells.

5.
Proc Natl Acad Sci U S A ; 120(13): e2222073120, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36961924

RESUMEN

Binding to the host cell receptors, CD4 and CCR5/CXCR4, triggers large-scale conformational changes in the HIV-1 envelope glycoprotein (Env) trimer [(gp120/gp41)3] that promote virus entry into the cell. CD4-mimetic compounds (CD4mcs) comprise small organic molecules that bind in the highly conserved CD4-binding site of gp120 and prematurely induce inactivating Env conformational changes, including shedding of gp120 from the Env trimer. By inducing more "open," antibody-susceptible Env conformations, CD4mcs also sensitize HIV-1 virions to neutralization by antibodies and infected cells to antibody-dependent cellular cytotoxicity (ADCC). Here, we report the design, synthesis, and evaluation of novel CD4mcs based on an indoline scaffold. Compared with our current lead indane scaffold CD4mc, BNM-III-170, several indoline CD4mcs exhibit increased potency and breadth against HIV-1 variants from different geographic clades. Viruses that were selected for resistance to the lead indane CD4mc, BNM-III-170, are susceptible to inhibition by the indoline CD4mcs. The indoline CD4mcs also potently sensitize HIV-1-infected cells to ADCC mediated by plasma from HIV-1-infected individuals. Crystal structures indicate that the indoline CD4mcs gain potency compared to the indane CD4mcs through more favorable π-π overlap from the indoline pose and by making favorable contacts with the vestibule of the CD4-binding pocket on gp120. The rational design of indoline CD4mcs thus holds promise for further improvements in antiviral activity, potentially contributing to efforts to treat and prevent HIV-1 infection.


Asunto(s)
Infecciones por VIH , Seropositividad para VIH , VIH-1 , Humanos , Citotoxicidad Celular Dependiente de Anticuerpos , Proteína gp120 de Envoltorio del VIH , Antígenos CD4/metabolismo , Anticuerpos Anti-VIH/farmacología
6.
ACS Med Chem Lett ; 14(1): 51-58, 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36655122

RESUMEN

The human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer on the virion surface interacts with the host receptors, CD4 and CCR5/CXCR4, to mediate virus entry into the target cell. CD4-mimetic compounds (CD4mcs) bind the gp120 Env, block CD4 binding, and inactivate Env. Previous studies suggested that a C(5)-methylamino methyl moiety on a lead CD4mc, BNM-III-170, contributed to its antiviral potency. By replacing the C(5) chain with differentially substituted pyrrolidine, piperidine, and piperazine ring systems, guided by structural and computational analyses, we found that the 5-position of BNM-III-170 is remarkably tolerant of a variety of ring sizes and substitutions, both in regard to antiviral activity and sensitization to humoral responses. Crystallographic analyses of representative analogues from the pyrrolidine series revealed the potential for 5-substituents to hydrogen bond with gp120 Env residue Thr 283. Further optimization of these interactions holds promise for the development of CD4mcs with greater potency.

7.
J Chem Inf Model ; 63(2): 633-642, 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36584335

RESUMEN

Recent experimental work has shown that the N501Y mutation in the SARS-CoV-2 S glycoprotein's receptor binding domain (RBD) increases binding affinity to the angiotensin-converting enzyme 2 (ACE2), primarily by overcompensating for a less favorable enthalpy of binding by greatly reducing the entropic penalty for complex formation, but the basis for this entropic overcompensation is not clear [Prévost et al. J. Biol. Chem.2021, 297, 101151]. We use all-atom molecular dynamics simulations and free-energy calculations to qualitatively assess the impact of the N501Y mutation on the enthalpy and entropy of binding of RBD to ACE2. Our calculations correctly predict that N501Y causes a less favorable enthalpy of binding to ACE2 relative to the original strain. Furthermore, we show that this is overcompensated for by a more entropically favorable increase in large-scale quaternary flexibility and intraprotein root mean square fluctuations of residue positions upon binding in both RBD and ACE2. The enhanced quaternary flexibility stems from N501Y's ability to remodel the inter-residue interactions between the two proteins away from interactions central to the epitope and toward more peripheral interactions. These findings suggest that an important factor in determining protein-protein binding affinity is the degree to which fluctuations are distributed throughout the complex and that residue mutations that may seem to result in weaker interactions than their wild-type counterparts may yet result in increased binding affinity thanks to their ability to suppress unfavorable entropy changes upon binding.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Humanos , Enzima Convertidora de Angiotensina 2/genética , Entropía , Simulación de Dinámica Molecular , Mutación , Unión Proteica , SARS-CoV-2/genética
8.
bioRxiv ; 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36093356

RESUMEN

Recent experimental work has shown that the N501Y mutation in the SARS-CoV-2 S glycoprotein's receptor binding domain (RBD) increases binding affinity to the angiotensin-converting enzyme 2 (ACE2), primarily by overcompensating for a less favorable enthalpy of binding by a greatly reducing the entropic penalty for complex formation, but the basis for this entropic overcompensation is not clear [Prévost et al., J. Biol. Chem . (2021) 297;101151]. We use all-atom molecular dynamics simulations and free-energy calculations to qualitatively assess the impact of the N501Y mutation on enthalpy and entropy of binding of RBD to ACE2. Our calculations correctly predict that N501Y causes a less favorable enthalpy of binding to ACE2 relative to the original strain. Further, we show that this is overcompensated for by a more entropically favorable increase in large-scale quaternary flexibility and intra-protein root-mean squared fluctuations of residue positions upon binding in both RBD and ACE2. The enhanced quaternary flexibility stems from N501Y's ability to remodel the interresidue interactions between the two proteins away from interactions central to the epitope and toward more peripheral interactions. These findings suggest that an important factor in determining protein-protein binding affinity is the degree to which fluctuations are distributed throughout the complex, and that residue mutations that may seem to result in weaker interactions than their wild-type counterparts may yet result increased binding affinity thanks to their ability to suppress unfavorable entropy changes upon binding.

9.
iScience ; 25(7): 104528, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35677392

RESUMEN

SARS-CoV-2 infection of host cells starts by binding the Spike glycoprotein (S) to the ACE2 receptor. The S-ACE2 interaction is a potential target for therapies against COVID-19 as demonstrated by the development of immunotherapies blocking this interaction. VE607 - a commercially available compound composed of three stereoisomers - was described as an inhibitor of SARS-CoV-1. Here, we show that VE607 broadly inhibits pseudoviral particles bearing the Spike from major VOCs (D614G, Alpha, Beta, Gamma, Delta, Omicron - BA.1, and BA.2) as well as authentic SARS-CoV-2 at low micromolar concentrations. In silico docking, mutational analysis, and smFRET revealed that VE607 binds to the receptor binding domain (RBD)-ACE2 interface and stabilizes RBD in its "up" conformation. Prophylactic treatment with VE607 did not prevent SARS-CoV-2-induced mortality in K18-hACE2 mice, but it did reduce viral replication in the lungs by 37-fold. Thus, VE607 is an interesting lead for drug development for the treatment of SARS-CoV-2 infection.

10.
bioRxiv ; 2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35233570

RESUMEN

SARS-CoV-2 infection of host cells starts by binding of the Spike glycoprotein (S) to the ACE2 receptor. The S-ACE2 interaction is a potential target for therapies against COVID-19 as demonstrated by the development of immunotherapies blocking this interaction. Here, we present the commercially available VE607, comprised of three stereoisomers, that was originally described as an inhibitor of SARS-CoV-1. We show that VE607 specifically inhibits infection of SARS-CoV-1 and SARS-CoV-2 S-expressing pseudoviral particles as well as authentic SARS-CoV-2. VE607 stabilizes the receptor binding domain (RBD) in its "up" conformation. In silico docking and mutational analysis map the VE607 binding site at the RBD-ACE2 interface. The IC 50 values are in the low micromolar range for pseudoparticles derived from SARS-CoV-2 Wuhan/D614G as well as from variants of concern (Alpha, Beta, Gamma, Delta and Omicron), suggesting that VE607 has potential for the development of drugs against SARS-CoV-2 infections.

11.
J Comput Aided Mol Des ; 36(1): 25-37, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34825285

RESUMEN

Screening already approved drugs for activity against a novel pathogen can be an important part of global rapid-response strategies in pandemics. Such high-throughput repurposing screens have already identified several existing drugs with potential to combat SARS-CoV-2. However, moving these hits forward for possible development into drugs specifically against this pathogen requires unambiguous identification of their corresponding targets, something the high-throughput screens are not typically designed to reveal. We present here a new computational inverse-docking protocol that uses all-atom protein structures and a combination of docking methods to rank-order targets for each of several existing drugs for which a plurality of recent high-throughput screens detected anti-SARS-CoV-2 activity. We demonstrate validation of this method with known drug-target pairs, including both non-antiviral and antiviral compounds. We subjected 152 distinct drugs potentially suitable for repurposing to the inverse docking procedure. The most common preferential targets were the human enzymes TMPRSS2 and PIKfyve, followed by the viral enzymes Helicase and PLpro. All compounds that selected TMPRSS2 are known serine protease inhibitors, and those that selected PIKfyve are known tyrosine kinase inhibitors. Detailed structural analysis of the docking poses revealed important insights into why these selections arose, and could potentially lead to more rational design of new drugs against these targets.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Reposicionamiento de Medicamentos/métodos , Preparaciones Farmacéuticas/administración & dosificación , Inhibidores de Proteasas/farmacología , SARS-CoV-2/efectos de los fármacos , Serina Endopeptidasas/química , COVID-19/virología , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular
12.
ACS Med Chem Lett ; 12(11): 1824-1831, 2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34795873

RESUMEN

The design and synthesis of butyl chain derivatives at the indane ring 3-position of our lead CD4-mimetic compound BNM-III-170 that inhibits human immunodeficiency virus (HIV-1) infection are reported. Optimization efforts were guided by crystallographic and computational analysis of the small-molecule ligands of the Phe43 cavity of the envelope glycoprotein gp120. Biological evaluation of 11-21 revealed that members of this series of CD4-mimetic compounds are able to inhibit HIV-1 viral entry into target cells more potently and with greater breadth compared to BNM-III-170. Crystallographic analysis of the binding pocket of 14, 16, and 17 revealed a novel hydrogen bonding interaction between His105 and a primary hydroxyl group on the butyl side chain. Further optimization of this interaction with the His105 residue holds the promise of more potent CD4-mimetic compounds.

13.
Soft Matter ; 17(43): 9957-9966, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34698327

RESUMEN

Properties of epoxy thermosets can be varied broadly to suit design requirements by altering the chemistry of the component agents. Atomistically-detailed molecular dynamics simulations are well-suited for molecular insight into the structure-property relationship for a rational tailoring of the chemistry. Since the macroscopic properties of interest for applications emerge hierarchically from molecular-scale chemical interactions, seamless integration of experiment, computation, and theory is of great interest. Recently, a Specific Volume-Cooling Rate analysis protocol was successfully developed to quantitatively compare the volumetric properties of an epoxy network model with experimental results in the literature, in spite of the nine orders of magnitude mismatch in the accessible time-scales. Here, we extend the application of the method for two epoxy networks in the same class of chemistry but whose monomers have a higher number of repeating units compared to the previous one for validating the generality of our approach. We observed that atomistic simulations are able to predict the experimental temperature trend of the specific volume within 0.4% for both these networks. Using the William-Landel-Ferry equation to account for rate differences, we also see good agreement between the computational and experimental values of the glass transition temperature.

14.
J Biol Chem ; 297(4): 101151, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34478710

RESUMEN

The seasonal nature of outbreaks of respiratory viral infections with increased transmission during low temperatures has been well established. Accordingly, temperature has been suggested to play a role on the viability and transmissibility of SARS-CoV-2, the virus responsible for the COVID-19 pandemic. The receptor-binding domain (RBD) of the Spike glycoprotein is known to bind to its host receptor angiotensin-converting enzyme 2 (ACE2) to initiate viral fusion. Using biochemical, biophysical, and functional assays to dissect the effect of temperature on the receptor-Spike interaction, we observed a significant and stepwise increase in RBD-ACE2 affinity at low temperatures, resulting in slower dissociation kinetics. This translated into enhanced interaction of the full Spike glycoprotein with the ACE2 receptor and higher viral attachment at low temperatures. Interestingly, the RBD N501Y mutation, present in emerging variants of concern (VOCs) that are fueling the pandemic worldwide (including the B.1.1.7 (α) lineage), bypassed this requirement. This data suggests that the acquisition of N501Y reflects an adaptation to warmer climates, a hypothesis that remains to be tested.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Enzima Convertidora de Angiotensina 2/química , COVID-19/patología , COVID-19/virología , Calorimetría , Humanos , Interferometría , Polimorfismo de Nucleótido Simple , Unión Proteica , Estructura Cuaternaria de Proteína , SARS-CoV-2/aislamiento & purificación , Glicoproteína de la Espiga del Coronavirus/química , Temperatura , Termodinámica
15.
Langmuir ; 37(33): 10183-10190, 2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34396774

RESUMEN

Sizing emulsions used as glass fiber surface treatments in composites manufacturing are aqueous suspensions of hydrophobic film formers, surface coupling agents, and surfactants. We employ all-atom molecular dynamics simulations to characterize droplet structures in several aqueous blends of the film-former diglycidyl ether of bisphenol A, coupling agent glycidoxypropyl trimethoxysilane, and a triblock copolymer surfactant (Pluronic L35 PEO/PPO copolymer). We show that the quasi-equilibrium states of emulsion droplets are invariant to different initial configurations. We examine the role of the surfactant in determining coupling agent partitioning between the droplet shell and corona and coupling agent cluster size distributions. This work takes a step toward systematic understanding of the sizing chemistry to optimize the interface between the glass and the resin in commercially relevant composites.

16.
Microorganisms ; 9(6)2021 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-34204725

RESUMEN

KR13, a peptide triazole thiol previously established to inhibit HIV-1 infection and cause virus lysis, was evaluated by flow cytometry against JRFL Env-presenting cells to characterize induced Env and membrane transformations leading to irreversible inactivation. Transiently transfected HEK293T cells were preloaded with calcein dye, treated with KR13 or its thiol-blocked analogue KR13b, fixed, and stained for gp120 (35O22), MPER (10E8), 6-helix-bundle (NC-1), immunodominant loop (50-69), and fusion peptide (VRC34.01). KR13 induced dose-dependent transformations of Env and membrane characterized by transient poration, MPER exposure, and 6-helix-bundle formation (analogous to native fusion events), but also reduced immunodominant loop and fusion peptide exposure. Using a fusion peptide mutant (V504E), we found that KR13 transformation does not require functional fusion peptide for poration. In contrast, simultaneous treatment with fusion inhibitor T20 alongside KR13 prevented membrane poration and MPER exposure, showing that these events require 6-helix-bundle formation. Based on these results, we formulated a model for PTT-induced Env transformation portraying how, in the absence of CD4/co-receptor signaling, PTT may provide alternate means of perturbing the metastable Env-membrane complex, and inducing fusion-like transformation. In turn, the results show that such transformations are intrinsic to Env and can be diverted for irreversible inactivation of the protein complex.

17.
bioRxiv ; 2021 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-34268505

RESUMEN

The seasonal nature in the outbreaks of respiratory viral infections with increased transmission during low temperatures has been well established. The current COVID-19 pandemic makes no exception, and temperature has been suggested to play a role on the viability and transmissibility of SARS-CoV-2. The receptor binding domain (RBD) of the Spike glycoprotein binds to the angiotensin-converting enzyme 2 (ACE2) to initiate viral fusion. Studying the effect of temperature on the receptor-Spike interaction, we observed a significant and stepwise increase in RBD-ACE2 affinity at low temperatures, resulting in slower dissociation kinetics. This translated into enhanced interaction of the full Spike to ACE2 receptor and higher viral attachment at low temperatures. Interestingly, the RBD N501Y mutation, present in emerging variants of concern (VOCs) that are fueling the pandemic worldwide, bypassed this requirement. This data suggests that the acquisition of N501Y reflects an adaptation to warmer climates, a hypothesis that remains to be tested.

18.
J Phys Chem B ; 125(24): 6609-6616, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34110824

RESUMEN

Obtaining accurate and reproducible free energies from molecular simulations is somewhat tricky due to incomplete knowledge of crucial slow degrees of freedom leading to hidden barriers that can stymie sampling. Employing a sufficiently large number of collective variables (CV) and ensuring ergodic sampling in orthogonal CV space, perhaps via tempering methods, can reduce these issues to some extent. For complex systems with high-dimensional free energy landscapes, both these approaches become computationally expensive. For high-dimensional landscapes, efficient exploration can be enabled by using temperature-accelerated MD (TAMD) and identification and characterization of minimum free energy pathways connecting minima can be found by using the string method (SM). Both TAMD and SM use mean-force estimates from finite MD simulations and are thus susceptible to sampling restrictions from hidden variables. A recent development in parallel tempering methods, "generalized replica exchange solute tempering" (gREST), can enhance sampling at a reasonable computational cost with its flexibility to target very specific "solutes" which can include arbitrary independent variables. Considering the advantages of both methods, we implement gREST-enabled TAMD and SM. By considering two different collective variable representations of the pentapeptide neurotransmitter met-enkephalin, we show that both gREST-enabled TAMD and SM yield more accurate and reproducible free energy predictions than TAMD and SM alone. Given the moderate computational cost of gREST compared with other replica-exchange methods, gREST-enabled SM represents a more attractive method for characterizing free energy minima and pathways among them for a large variety of systems.


Asunto(s)
Simulación de Dinámica Molecular , Entropía , Reproducibilidad de los Resultados , Temperatura
20.
ACS Chem Biol ; 16(1): 193-204, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33410670

RESUMEN

A strategy has been established for the synthesis of a family of bifunctional HIV-1 inhibitor covalent conjugates with the potential to bind simultaneously to both the gp120 and gp41 subunits of the HIV-1 envelope glycoprotein trimeric complex (Env). One component of the conjugates is derived from BNM-III-170, a small-molecule CD4 mimic that binds to gp120. The second component, comprised of the peptide DKWASLWNW ("Trp3"), was derived from the N-terminus of the HIV-1 gp41 Membrane Proximal External Region (MPER) and found previously to bind to the gp41 subunit of Env. The resulting bifunctional conjugates were shown to inhibit virus cell infection with low micromolar potency and to induce lysis of the HIV-1 virion. Crucially, virolysis was found to be dependent on the covalent linkage of the BNM-III-170 and Trp3 domains, as coadministration of a mixture of the un-cross-linked components proved to be nonlytic. However, a significant magnitude of lytic activity was observed in Env-negative and other control pseudoviruses, suggesting parallel mechanisms of action of the conjugates involving Env interaction and direct membrane disruption. Computational modeling suggested strong membrane-binding activity of BNM-III-170, which may underly the nonspecific virolytic effects of the conjugates. To investigate the scope of the membrane effect, cell-based cytotoxicity and membrane permeability assays were performed employing flow cytometry. Here, we observed a dose-dependent and specific cytotoxic effect on HIV-1 Env-expressing cells by the small-molecule bifunctional inhibitor. Most importantly, Env-negative cells were not susceptible to the cytotoxic effect upon exposure to this construct at concentrations where cell-killing effects were observed for Env-positive cells. Computational structural modeling supports a mechanism in which the bifunctional inhibitors bind to the gp120 and gp41 subunits in tandem in open-state Env trimers and induce relative motion of the gp120 subunits consistent with models of Env inactivation. This observation supports the idea that the cell-killing effect of the small-molecule bifunctional inhibitor is due to specific Env conformational triggering. This work lays important groundwork to advance a small-molecule bifunctional inhibitor approach for eliminating Env-expressing infected cells and the eradication of HIV-1.


Asunto(s)
Muerte Celular/efectos de los fármacos , Proteína gp120 de Envoltorio del VIH/metabolismo , Proteína gp41 de Envoltorio del VIH/metabolismo , VIH-1/metabolismo , Péptidos/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Péptidos/química , Bibliotecas de Moléculas Pequeñas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA